Large-Scale Self-Assembly in Weakly-Flocculated Suspensions

Author:

Dakskobler Aleš1,Valant Matjaz2

Affiliation:

1. VALL-CER d.o.o. Tehnološki park 24, Ljubljana 1000, Slovenia

2. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

Background: Studies on the formation of colloidal crystals in concentrated suspensions have mainly been based on dispersed suspensions with a repulsive inter-particle potential of hard or nearly hard spheres. The self-assembly in weakly-flocculated suspensions has still been unrealized. Here, we report on the formation of ordered structures in concentrated suspensions of nearly-hard spherical particles with weakly-attractive inter-particle interactions that are an order of magnitude higher than the particles’ thermal energy. Methods: In our case, the self-assembly in such suspensions is not thermodynamically driven, but an external shear force must be applied. The driving force for the particles’ ordering is an increase in the inter-particle interactions. This manifests itself in a decrease in the average angle between the interparticle interaction direction and the applied shear stress direction. Results: For a successful ordering into a large-scale closed packed assembly, the external shear force must not exceed the inter-particle attractive interaction for the minimum possible average angle (as in the closed packed structures) but be high enough to enable the particles to move in the highly loaded suspension. Conclusion: The developed method for the self-assembly of the weakly flocculated systems can be applied very generally e.g. a control over a composition of heterogeneous colloidal crystals, manufacturing of the large-scale photonic crystals or preparation of very densely packed compacts of particles needed for the production of sintered ceramics.

Funder

Slovenian Research Agency

Publisher

Bentham Science Publishers Ltd.

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3