Therapeutic Voyage of Graphene-based Biosensor

Author:

Sharma Rama1

Affiliation:

1. Department of Chemistry, GLA University, Mathura, India

Abstract

: The study of carbon-based materials and nanoparticles is currently an exciting field of study in the domain of material science. One of the most prominent of these materials is graphene, along with its related components graphene oxide and reduced graphene oxide. A single-layer, twodimensional nanomaterial called graphene (GN) is employed in many different industries, such as electronics and biology. Graphene is a remarkable two-dimensional substance that has earned the title of "wonder material." Its remarkable electrical, optical, thermal, and mechanical qualities have attracted significant attention. Graphene's intriguing characteristics have led to its integration into numerous biosensing applications. Graphene possesses remarkable chemical, electrical, and physical qualities. The distinctive properties of graphene, particularly its electrical conductivity, large surface area, and significant electron mobility, are focusing more attention on applications in biomedicine that facilitate easier health monitoring. Biosensors with high sensitivity and precision can enhance patient care, and offer an opportunity for an early illness diagnosis and clinical pathogen identification. Additionally, a wide range of biological molecules, including glucose, hydrogen peroxide, cholesterol, dopamine, etc., can be detected using graphene-based biosensors. This study evaluates contemporary developments regarding graphene-based biosensors and their prospects and difficulties in this rapidly developing profession in the coming era. Graphene-based nanomaterials are appropriate to be employed in various biological and sensory contexts, including medicine and gene transfer, because of their unusual topologies and extraordinary properties. Graphene's outstanding characteristics enable biosensing applications to obtain the appropriate sensitivity, selectivity, and repeatability for a range of targets.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3