Controlling Wetting Properties on Nanostructure Surfaces by the Coupled Effect of the Structural Parameter and Roughness Factor

Author:

Shi Pengcheng1ORCID,Lu Yan1,Liu Peng1

Affiliation:

1. Key Laboratory of Metallurgical Equipment and Control Technology, Wuhan University of Science and Technology, Wuhan 430081, China

Abstract

Background: This study used molecular dynamics simulations to investigate the wetting properties of a droplet on copper surfaces with different nanostructures to determine the influence of the structural parameter and roughness factor on the wetting properties. Methods: The simulation results show that the structural parameter h/b can determine the wetting transition of droplets on surfaces. In addition, the critical structural parameter values are 1.5, 1.5, 2.08 and 2.24 for the square pillar, cylinder, frustum and cone nanostructures, respectively. Due to the restriction of the wedge surface on water molecules, the effect of the wedge surface is not the same when the theoretical gap and height of the nanostructures are changed on different surfaces. Results and Discussion: For the square pillar and the cylinder surfaces, when changing the height or the theoretical gap of the nanostructure, the wedge angle is always the same and is 90°, so the effect of the wedge surface is unchanged for water molecules. For the frustum and the cone surfaces, the wedge angle does not change when the theoretical gap of the nanostructure is changed but when the height of the nanostructure is changed, the wedge angle gradually increases but does not exceed 90° resulting in the restriction of the wedge surface on water molecules gradually increasing. Therefore, for the same height and theoretical gap, the contact angle of the frustum and the cone surfaces is larger than that of the square pillar surfaces and cylinder surfaces due to the effect of the wedge surface. It is also observed that the increased roughness factor helps increase the contact angle of the droplet. Conclusion: We propose that the wetting properties of the nanostructure surface can be controlled by the structural parameter associated with the surface roughness.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3