Affiliation:
1. Materials and Nuclear Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395- 834, Tehran, Iran
2. Department of Physics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Abstract
Background:
Superparamagnetic iron oxide nanoparticles (SPIONs) are known for various
biomedical applications like hyperthermia, magnetic resonance imaging and drug delivery. These
magnetic particles should be capped with certain biocompatible agents. In this regard, it is a technological
challenge to control size, shape, stability, and dispersibility of SPIONs in desired mediums.
Methods:
Cathodic electrosynthesis procedure was used for the preparation of naked SPIONs. Naked
SPIONs were prepared by galvanostatic electrodeposition by applying the current density of 5 mA
cm-2 for 30 min. For preparation of chitosan capped SPIONs, only the composition of deposition
electrolyte was changed with the addition of 1 g L–1 chitosan. The prepared NPs were characterized
through FE-SEM, TEM, XRD, DLS and VSM techniques.
Results:
The XRD patterns have the well-defined and relative broad diffraction peaks, which confirmed
spinal magnetite structure for both naked CS capped SPIONs. FE-SEM images which clearly
showed that both samples have a well-defined 10nm particles with no obvious aggregation. IR bands
related to the chemical bonds of chitosan were observed, which proved a chitosan coating. The superparamagnetic
nature of the prepared naked and CS-SPIONs were confirmed by VSM data.
Conclusion:
In summary, a facile electrochemical based platform was developed for the synthesis of
chitosan capped superparamagnetic iron oxide nanoparticles from ethanol media. The observed
weight loss (~16%) during the calcination of the CS- SPIONs, and also the presence of vibration
bands related to the chitosan bands confirmed the chitosan layer on the SPIONs. Also, superparamagnetic
nature of the CS capped SPIONs was confirmed by VSM data.
Publisher
Bentham Science Publishers Ltd.
Subject
Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献