One-pot Electro-synthesis and Characterization of Chitosan Capped Superparamagnetic Iron Oxide Nanoparticles (SPIONs) from Ethanol Media

Author:

Aghazadeh Mustafa1,Karimzadeh Isa2

Affiliation:

1. Materials and Nuclear Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395- 834, Tehran, Iran

2. Department of Physics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

Background: Superparamagnetic iron oxide nanoparticles (SPIONs) are known for various biomedical applications like hyperthermia, magnetic resonance imaging and drug delivery. These magnetic particles should be capped with certain biocompatible agents. In this regard, it is a technological challenge to control size, shape, stability, and dispersibility of SPIONs in desired mediums. Methods: Cathodic electrosynthesis procedure was used for the preparation of naked SPIONs. Naked SPIONs were prepared by galvanostatic electrodeposition by applying the current density of 5 mA cm-2 for 30 min. For preparation of chitosan capped SPIONs, only the composition of deposition electrolyte was changed with the addition of 1 g L–1 chitosan. The prepared NPs were characterized through FE-SEM, TEM, XRD, DLS and VSM techniques. Results: The XRD patterns have the well-defined and relative broad diffraction peaks, which confirmed spinal magnetite structure for both naked CS capped SPIONs. FE-SEM images which clearly showed that both samples have a well-defined 10nm particles with no obvious aggregation. IR bands related to the chemical bonds of chitosan were observed, which proved a chitosan coating. The superparamagnetic nature of the prepared naked and CS-SPIONs were confirmed by VSM data. Conclusion: In summary, a facile electrochemical based platform was developed for the synthesis of chitosan capped superparamagnetic iron oxide nanoparticles from ethanol media. The observed weight loss (~16%) during the calcination of the CS- SPIONs, and also the presence of vibration bands related to the chitosan bands confirmed the chitosan layer on the SPIONs. Also, superparamagnetic nature of the CS capped SPIONs was confirmed by VSM data.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3