Pareto Optimal Design of Thermal Conductivity and Viscosity of NDCo3O4 Nanofluids by MOPSO and NSGA II Using Response Surface Methodology

Author:

Esfe Mohammad Hemmat1,Hajmohammad Mohammad Hadi1,Wongwises Somchai2

Affiliation:

1. Department of Mechanical Engineering, Imam Hossein University, Tehran, Iran

2. Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok, Thailand

Abstract

Background: Achieving a nanofluid with optimal thermal conductivity and viscosity is one of the main problems of applications of nanofluids in industries. Methods: There are experimental and theoretical methods to reach an applicable nanofluids with mentioned characteristics. Surely, experimental methods are not optimal in time and cost($) aspects. So, in the present study multi-objective optimization of nanofluids ND-Co3O4 is done to find the optimal solid volume fraction for having maximum thermal conductivity and minimum viscosity. The response surface methodology (RSM) is used to model target functions using empirical data. The improved non- dominated sorting method and multi-objective particle swarm optimization are used as powerful tools for optimization. In order to implement the optimization process, the obtained target function model is joined to multi-objective particle swarm algorithm and it is used in each step of the target function evaluation. Results: The obtained results of these two algorithms are presented in the form of Pareto front. Also, a comparison between them is provided. According to the optimal results, MOPSO has a better performance that the other one. Conclusion: It will be shown that the highest thermal conductivity and the lowest viscosity occur at the maximum temperature. By investigating obtained optimum results, the optimal point with highest thermal conductivity and lowest viscosity was found at about 60 °C and 0.1 to 0.11 of solid volume fraction.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3