Preparation and Improved Capacitive Behavior of NiO/TiO2 Nanocomposites as Electrode Material for Supercapacitor

Author:

Anandhi Palani1,Kumar Veerabadran Jawahar Senthil1,Harikrishnan Santhanam2

Affiliation:

1. Department of Electronics and Communication Engineering, Anna University, Chennai - 600025, India

2. Department of Mechanical Engineering, Adhi College of Engineering and Technology, Sankarapuram - 631605, Tamilnadu, India

Abstract

Background: Of late, supercapacitors have been drawing great attention over other rechargeable energy storage devices. More efforts are made on the electrode materials of the supercapacitors, in order to improve the specific capacitance and energy density. Based on the past literature, it was stated that pure TiO2 (as electrode material) could promote faradaic reaction to a limited extent due to its low electronic conductivity. Further, this low conductivity could hinder the ion transfer process between electrolyte and electrode during intercalation and de-intercalation, resulting in poor energy density. Hence, it is essential to incorporate high electronic conductivity material into TiO2, for improving the electrochemical performance. Objective: In the present study, the preparation and electrochemical performance of NiO/TiO2 nanocomposites as an electrode material for supercapacitor were extensively studied. Methods: NiO/TiO2 nanocomposites were synthesized by sol-gel method. The as-prepared nanocomposites were characterized by high-resolution TEM, field emission SEM and XRD. The electrochemical behaviors of the electrode using nanocomposites were assessed by means of cyclic voltammetry (CV) and galvanostatic charge-discharge tests. Results: The maximum specific capacitance of the nanocomposites based electrode witnessed through CV test was 405 F g-1 at the scan rate of 5 mV s-1 in 1M Na2SO4 electrolyte. The capacitance retention after 5000 charge-discharge cycles was estimated as 92.32%. The energy and power densities at current density of 1 A g-1 were found to be 5.67 Wh kg-1 and 210.52 W kg-1, respectively. Conclusion: NiO/TiO2 nanocomposites synthesized via sol-gel technique appeared to be flake-like structure. NiO incorporated into TiO2 increased higher electronic conductivity while comparing to pure TiO2. Also, an introduction of NiO into TiO2 improved the specific capacitance, power density, energy density and cycle stability. Due to these facts, combining NiO with TiO2 could be considered to be an efficient way of enhancing the electrochemical performance of electrodes of the supercapacitor.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3