One Pot Aqueous Synthesis of L-Histidine Amino Acid Capped Mn: ZnS Quantum Dots for Dopamine Sensing

Author:

Arunan Ravi1ORCID,Joseph Printo1ORCID,Sivakumar Muthusamy1ORCID,Kiruba Daniel Suthanthira Cross Guevara2ORCID

Affiliation:

1. Division of Nanoscience and Technology, Department of Chemistry Bharathidasan Institute of Technology Anna University, Tiruchirappalli – 620024, India

2. Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore – 560012, India

Abstract

Background: Mn doped ZnS is selected as the right element which is prominent among quantum dot for its high luminescent and quantum yield property and also non toxicity while comparing with other organometallic quantum dot synthesized by using different capping agents. Methods: An interesting observation based on colorimetric sensing of dopamine using manganese doped zinc sulfide quantum dot is discussed in this study. Mn doped ZnS quantum dot surface passivated with capping agents such as L-histidine and also in polymers like chitosan, PVA and PVP were studied and compared. The tunable fluorescence effect was also observed in different polymers and amino acid as capping agents. Optical characterization studies like UV-Visible spectroscopy and PL spectroscopy have been carried out. The functional group modification of Quantum dot has been analyzed using FTIR and size and shape analysis was conducted by using HRTEM image. Result: The strong and broad peak of FTIR in the range of 3500-3300 cm-1 confirms the presence of O-H bond. It is also observed that quenching phenomena in the luminescent peak are due to weaker confinement effect. The average size of the particle is shown to be around 4-5 nm. Changes in color of the quantum dot solution from transparent to dark brown has been due to the interaction with dopamine. Conclusion: Finally, L-Histidine amino acid capped Mn:ZnS shows better results in luminescence and size confinement properties. Hence, it was chosen for dopamine sensing due to its colloidal nature and inborn affinity towards dopamine, a neurotransmitter which is essential for early diagnosis of neural diseases

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3