Prediction and Optimization of Parameters for the Al5083/ B4C Composite Wear Rate

Author:

Singh Ram1,Shadab Malik1,Debnath Rabisankar1,Rai Ram Naresh1

Affiliation:

1. Department of Production Engineering, National Institute of Technology Agartala, Jirania - 799046, India

Abstract

Background: Al5083 has been basically used in marine and aerospace applications where it is intended for higher corrosion resistance and better weldability. Again this, Al5083 matrix has not been suitable for various other applications such as electrical contact brushes, cylinder liners, artificial joints and helicopter blades due to its poor wear resistance properties. Objective: The aim of this research is the optimization of wear rate of the composite with Al5083 matrix, reinforced with B4C (Boron carbide) particles, and it is achieved through the investigation of the subsequent effect: wt.% of the reinforcement, applied load and sliding speed. Methods: The material used for specimen is Al5083 and Al5083/B4C composite which is melted at 750°C in an induction furnace; the composite is prepared by stir casting technique. It was developed by an ex-situ technique. The liquid melt poured into preheated cast iron mould for carrying out the specimen preparation of wear testing. Results: The wear rate of Al5083/B4C composite is less than Al5083, the most influencing factor on wear rate is applied load and mechanism of deformation induced in the sliding surface of the pin was analysed by SEM (scanning electron microscope). Conclusion: Wear rate of Al5083 and Al5083/B4C composite increases with the increase of applied load, sliding speed and decreases as the wt. % B4C increases. The contribution of applied load is more in wear rate as compared to the other two factors and the value predicted by Taguchi, obtained by RSM (Response surface methodology) and evaluated by experiment are almost similar.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3