Synthesis, Characterization and Photocatalytic Activity of Tin Oxide Nanocrystals

Author:

Sharma Shatendra1ORCID,Vats Monika2ORCID,Sharma Jyotsna2,Chhabra Arvind3,Kumar R.K. Rakesh4,Chuang Cheng-Hsin4

Affiliation:

1. USIC and School of Engineering, Jawaharlal Nehru University, New Delhi-110067, India

2. Amity School of Applied Sciences, Amity University Haryana, Gurugram-122413, India

3. Stem Cell Institute, Amity University Haryana, Gurugram-122413, India

4. Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan

Abstract

Background: Tin oxide nanoparticles also show good photocatalytic efficiency due to wide bandgap and high recombination rates of photo-generated electron-hole pairs. Being non-toxic and chemically stable, the tin oxide nanoparticles are used as dynamic photo-catalyst for the degradation. Tin oxide nanocrystals suitable for charge storage devices are synthesized using the coprecipitation technique. Objectives: Synthesis of Tin oxide nanocrystals by using the co-precipitation method for photocatalytic activity under sunlight that can be used for photo-degradation. The method of synthesis and characterization are also discussed. Materials and Methods: The nanocrystals are prepared by co-precipitation method using stannic chloride and sodium carbonate. Sodium carbonate is added under constant stirring drop by drop for 90 minutes. The solution is settled for 4 hours. The precipitates are first washed using de-ionized water and then with ethyl alcohol. The dried powder of nanocrystals is then calcinated at 500°C for one hour in a muffle furnace. The structural, morphological, optical, and electrical characterization of these synthesized crystals is done using (XRD), (FESEM), (TEM), (UV-Visible), (FT-Raman), Zeta potential, and dielectric constant measurements. Results and Discussion: The sizes of synthesized nanocrystals vary from 25 nm to 100 nm and are found to be optically transparent. The dielectric constant of nanocrystals is measured in the frequency range of 100Hz-1MHz and it can be seen that it declines from ~2000 at a frequency of 100Hz to ~30 at 1MHz. However, this decline in dielectric constant with frequency can be explained well on the basis of strong space charge polarization and rotational direction polarization processes in nanostructures. In the high-frequency regions, these processes cannot follow the electrical field frequency variations that result in the rapid decrease of dielectric constant. Photocatalytic Activity: The photocatalytic activity of the particles under sunlight is also investigated, which shows that the crystals show degradation of the methylene blue dye under sunlight irradiation. Theoretical investigations with DFT: The bandgap of the particles was also calculated from the UV-VIS spectra, which was found to be ~3.6 eV and this experimentally observed value of bandgap matches with that calculated theoretically from Density Functional Theory (DFT) using Local Density Approximation (LDA). Conclusion: The method of synthesis reported in the present paper is scalable and can be used for the commercial synthesis of SnO2 nano-crystals for electrodes and energy storage devices.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3