Selenium Nanoparticles in Folate-Targeted Delivery of the pCMV-Luc DNA Reporter Gene

Author:

Maiyo Fiona C.1ORCID,Mbatha Londiwe S.1ORCID,Singh Moganavelli1ORCID

Affiliation:

1. Nano-Gene and Drug Delivery Laboratory, Department of Biochemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa

Abstract

Background: Selenium, an essential micronutrient, has been studied for decades for its anticancer properties. Selenium nanoparticles (SeNPs) have now emerged as an interesting alternative for drug and gene delivery. Aims: We aimed to demonstrate in proof of principle, the potential use of SeNPs in targeted pCMVLuc DNA (pDNA) delivery in vitro. Objectives: To chemically synthesize, characterize and evaluate the transgene expression of functionalized SeNPs in five human cell lines. Methods: SeNPs were synthesized via chemical reduction, coated with chitosan (Ch) and a targeting moiety, folic acid (FA). All nanoparticles were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), UV-vis and Fourier transform infra-red (FTIR) spectroscopy. Nanoparticle:pDNA interactions were assessed using the electrophoretic mobility shift, dye displacement and nuclease protection assays. The MTT and Luciferase reporter gene assays were used to determine cytotoxicity and transgene expression, respectively, in the human colorectal adenocarcinoma (HT-29 and Caco-2), breast adenocarcinoma (MCF-7), oral epidermoid/cervical carcinoma contaminant (KB) and the embryonic kidney (HEK293) cells. Results: Homogenous nanoparticles of 60-70 nm were able to successfully bind, compact and protect the pDNA from enzyme digestion. Low cytotoxicity was observed in all cells, except for the MCF-7 cells, which could be attributed to apoptosis and necrosis. Luciferase gene expression was highest for the targeted nanocomplexes in the folate-receptor rich KB cell line, confirming nanocomplex uptake through folate receptor-mediated endocytosis. Conclusion: This study opens a new avenue for synergistic treatment of cancer, combining selenium’s bioactivity and its carrier potential for therapeutic gene delivery.

Funder

National Research Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3