Cyclodextrin based Nanosponges for the Oral Delivery of Actarit: Physicochemical Characterisation and Dissolution Studies

Author:

Madhavi M.1,Kumar G. Shiva1

Affiliation:

1. GITAM School of Pharmacy, GITAM Deemed to be University, Hyderabad - 502329, Telangana, India

Abstract

Introduction: The current research aims to formulate a controlled release formulation of Actarit utilizing cyclodextrin based nanosponges as a nanocarriers. β-Cyclodextrin built nanosponges were prepared by condensation reaction using diphenyl carbonate as crosslinking agent. Method: A 3-level, 3-factor Box-Behnken design was used to optimize the reaction conditions. The particle size, zeta potential and solubilization efficiency of prepared nanosponges were determined. Actarit was loaded into nanosponges by freeze drying method. Actarit loaded nanosponges were further evaluated for particle size, zeta potential, surface morphology, FTIR, DSC, XRD and Dissolution characteristics. The cyclodextrin nanosponges prepared under optimum conditions exhibited a particle size range of 143.42 to 152.76 nm with low polydispersity indices. FTIR spectra confirmed the formation of carbonyl bond between the β-Cyclodextrin molecules. Results and Discussion: Actarit loaded nanosponges exhibited a particle size range of 157.13 to 168.34 nm with minimum polydispersity index. The zeta potential value was sufficiently high to maintain the stability of colloidal nanosponges. TEM image exposed the spherical structure of drug loaded nanosponges that could be retained and released gradually over time. The FTIR, DSC and XRPD studies inveterate the interaction between Actarit and nanosponges. The drug loaded nanosponges displayed a significant progress in dissolution of drug when compared to plain Actarit. The initial rapid release of Actarit from nanosponges formulations was observed. After 24 h of study, around 90 % of the drug released from nanoformulation and only around 20 % of the drug from free drug suspension. Conclusion: Cyclodextrin based nanosponges displayed superior complexing capability with increased solubility of poorly soluble Actarit.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3