Wettability of Graphene Coated on Aluminum Substrate with Microstructure Modification

Author:

Bai Qingshun1ORCID,Dou Yu-Hao1,Guo Wanmin1,Guo Yongbo1,Du Yunlong1

Affiliation:

1. School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin 150000, China

Abstract

Background: As a new type of coating material, graphene has an important application prospect in creating hydrophobicity on the material surface. It can be seen that research on the wettability of graphene has a very actual significance in its application. Graphene membrane can change the wettability of the aluminum surface effectively. It can be combined with the traditional method to tune the wettability of the metal surface. Adding the microstructure is a very common method for changing the wettability. Therefore, the results have guided significance for the practical application of graphene in controlling the wettability of aluminum substrate with microstructure. Methods: This paper uses molecular dynamics to simulate graphene’s adsorption and wetting behavior on the aluminum substrate with microstructure and to calculate energy changes in the two processes. Results: The adsorption state of graphene is related to the aspect ratio of the microstructure. When the aspect ratios of the microstructure become larger, the graphene can be completely absorbed by the substrate, causing larger binding free energy and higher adhesion spontaneity of graphene. The wetting contact angles of the substrate with graphene are significantly higher than those of the aluminum substrate without graphene. Conclusion: The aspect ratio can influence the free energy and the binding energy, causing different states in graphene. The large aspect ratio will increase the absolute value of the free energy and release more binding energy, causing a more stable state. The graphene may prevent the deformation of the hydrogen bond and cause worse wettability. The results have been of great significance for the practical application of graphene in controlling the wettability of aluminum substrate with microstructure.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3