Recent Trends in Applications of Nanofluids for Effective Utilization of Solar Energy

Author:

Sonawane Shriram S.1,Thakur Parag P.1ORCID,Mohammed Hussein A.2ORCID

Affiliation:

1. Department of Chemical Engineering, Nano Research Project Laboratory, Visvesvaraya National Institute of Technology, Nagpur, MS 440010, India

2. WA School of Mines-Minerals, Energy & Chemical Engineering, Curtin University, WA 6102, Australia

Abstract

: Renewable-energy sources have been explored recently by scientists to fulfill the global energy demand. According to the International Energy Agency (IEA), by 2040, wind and solar power will be the star performers for energy conservation. The annual potential energy received from the sun ranges from 1,575 to 49,800 exajoules (EJ). However, this energy is not being utilized to its potential. Recently, researchers have proven that nanofluids can be used as a working fluid replacing the conventional working fluid for solar collectors and other heat exchange operations. The selection of the nanofluid is not only based on the size and shape of nanoparticles but the pH value and stability of nanofluids are also important parameters. : This review paper is mainly focused on the recent trends in nanofluids applications for the capture, conservation, and utilization of solar energy. The present paper reviews the detailed analysis of various forces affecting the nanofluid system and also highlights the important aspects to reduce the frictional energy losses, exergy destruction, entropy generation, effect of the flow properties, and thermo-physical properties of the nanofluids, and other reasons for wastage of the exergy. This study also compares the performance of the direct absorption solar panel, flat plate solar panel, parabolic solar collector, photovoltaic thermal solar collector, linear Fresnel solar collector, solar dish, and evacuated type solar collector. : Among these solar collectors, direct absorption solar collectors, flat plate solar collectors, photovoltaic solar collectors, and evacuated type solar collectors are more commonly used solar collectors; thus, the exergy and energy analyses of these collectors are important for their design and application. Stability issues and agglomeration problems are still some major concerns involved in the application of nanofluids. However, the use of nanofluid increases the performance of the solar collector compared to the base fluid as a working fluid. This paper also highlights the recent trends in the application of nanofluids in solar collectors.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Green Nanomaterials for Clean and Sustainable Environment;Current Nanoscience;2023-11

2. Stability of nanofluids;Nanofluid Applications for Advanced Thermal Solutions;2023

3. Synthesis and characterization of nanofluids;Nanofluid Applications for Advanced Thermal Solutions;2023

4. Key markets of nanofluids;Nanofluid Applications for Advanced Thermal Solutions;2023

5. Introduction to nanofluids;Nanofluid Applications for Advanced Thermal Solutions;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3