Bacterial Cellulose: A Versatile Material for Fabrication of Conducting Nanomaterials

Author:

Mazhar Ul-Islam 1ORCID,Yasir Sumaiya1,Mombasawala Laiqahmed1,Manan Sehrish2,Wajid Ullah Muhammad2

Affiliation:

1. Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman

2. Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Nanomaterials such as nanoparticles, nanorods, nanofibers, and nanocomposites have received immense consideration and are widely used for different applications in various fields. The exploration of new synthesis routes, simple processing techniques, and specialized applications are growing to different fields and bringing extra interest to stakeholders. Bacterial cellulose (BC), a biopolymer produced by microbial and cell-free systems, is receiving growing applications in various fields, including medical, energy, environment, food, textile, and optoelectronics. As pristine BC lacks antimicrobial activity, conducting and magnetic properties, and possesses limited biocompatibility and optical transparency, its composites with other materials are developed to bless it with such features as well as improve its existing properties. Herein, we have reviewed the role of BC as a matrix to impregnate conducting nanomaterials (e.g., carbon nanotubes, graphene, and metals and metal oxides) and polymers (polyaniline, polypyrrole, and poly (3,4-ethylenedioxythiophene)–poly (styrene sulfonate)) for the development of composite materials. These BC-based composite materials find applications in the development of energy storage devices, wearable electronics, biosensors, and controlled drug delivery systems. We have also highlighted the major hurdles to the industrialization of BC-based composites and provided future projections of such conducting nanomaterials.

Funder

Oman research Council

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3