Residual Stress Distribution and Microstructure Characterization of Particle Reinforced Titanium Matrix Composite After Shot Peening Treatment: A Review

Author:

Wen Yan1,Wu Yaya1,Liu Pu1,Xie Lechun1ORCID,Lu Weijie2

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Shot peening (SP) can modify the surface properties of titanium alloys and titanium matrix composites (TMCs). Based on our previous work in the last ten years, the microstructure and mechanical properties of SP treated Ti-6Al-4V (TC4) and (TiB+TiC)/TC4 are summarized in this review. The compressive residual stress (CRS) was formed on the surface after SP. At different SP intensities, the thickness of the surface CRS layer was improved with increasing SP intensities. During the stress peening, the CRS increased evidently, and the increment was proportional to the prestress. Besides, CRS’s thermal relaxation was investigated, which showed that the CRS in the whole deformation layer was relaxed. The relaxation mechanism could be explained by the Zener-Wert- Avrami model. The microstrain, the domain size, and the dislocation density of the peened layer were investigated using the Voigt method. The domain size of TC4 was smaller than the composite, and the microstrain of the TC4 was higher than the composite. The average dislocation density was increased after SP due to the existence of reinforcements. Utilizing the Rietveld method to analyze the microstructure after SP, the variations were similar to the Voigt method’s results. Also, the composite’s stability was higher than TC4 because of the existence of reinforcements. Hardness analysis revealed that the existence of reinforcements raised the hardness. In the peened layer, the surface’s hardness was maximum, and it decreased with the increase in depth. At the same temperature, the hardness of the TC4 was smaller than the composite counterpart. Finally, the strengthening mechanism of SP was discussed and summarized based on the above analysis.

Funder

Ministry of Education of China

111 Project

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3