Self-supported Hierarchical Nanoporous Cu/Mo@MoOx Hybrid Electrodes as Robust Nonprecious Electrocatalysts for High-efficiency Hydrogen Evolution

Author:

Han Li-Ping1,Shi Hang1,Yao Rui-Qi1,Wan Wu-Bin1,Wen Zi1,Lang Xing-You1ORCID,Jiang Qing1ORCID

Affiliation:

1. Key Laboratory of Automobile Materials, Jilin University, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China

Abstract

Background: The hydrogen evolution reaction is a crucial step in electrochemical water splitting to generate molecular hydrogen with high purity, but it usually suffers from a sluggish reaction kinetics in alkaline media because of additional water dissociation and/or improper adsorption energy of reactive hydrogen intermediates. It is desirable to design highly active and robust nonprecious electrocatalysts as alternatives to state-of-the-art commercially available Pt/C catalysts for large-scale hydrogen production via water-alkali electrolysis. Methods: We developed monolithic nanoporous hybrid electrodes composed of electroactive Mo@MoOx nanoparticles, which are seamlessly integrated on hierarchical nanoporous Cu scaffold (Cu/Mo@MoOx) by making use of a spontaneous phase separation of Mo nanoparticles and subsequently, self-grown MoOx in chemical dealloying. Results: Owing to the unique monolithic electrode architecture, in which the constituent Mo@MoOx nanoparticles work as electroactive sites and the hierarchical nanoporous Cu skeleton serves as fast electron-transfer and mass-transport pathways, the monolithic nanoporous Cu/Mo@MoOx hybrid electrode exhibits superior electrocatalysis in 1 M KOH, with a low Tafel slope of 66 mV dec−1 and outstanding stability. It only takes them ~185 mV overpotential to reach −400 mA cm−2, ~150 mV lower than that of nanoporous Cu supported Pt/C. Conclusion: The outstanding electrochemical performance and excellent structural stability make nanoporous Cu/Mo@MoOx electrodes attractive alternatives to Pt/C catalysts in alkaline-based devices.

Funder

Program for JLU Science and Technology Innovative Research Team

Chang Jiang Scholar Program of China

Top-notch Young Talent Program of China

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3