Cu2O-TiO2 Composite for Photocatalytic Degradation of Benzene and its Derivatives Using Visible Light

Author:

Nune Satya Vijaya Kumar1ORCID,Golimidi Ravi Kumar1

Affiliation:

1. Centre of Excellence (CoExAMMPC), Division of Chemistry, Department of Science & Humanities, Vignan’s Foundation for Science, Technology and Research (VFSTR), Guntur - 522213, AP, India

Abstract

Background: Heterostructured nanocomposites have gained massive attention for their catalytic properties lately. A wide array of different visible-light-active photocatalysts (VLAPs) have been extensively studied over the past couple of years to fine-tune the bandgap of various stable semiconductors. Objective: The current investigation reports the sensitization of TiO2 nanoparticles with nano-sized cuprous oxide, a well-studied p-type semiconductor, which has a relatively narrow bandgap ranging between 2.1 eV & 2.6 eV, to obtain a visible light active photocatalyst. Methods: Visible-light-active Cu2O–TiO2 nanocomposite was synthesized using solvothermal technique. The nanocomposite’s structure and size properties were studied using powder diffraction (XRD), and electron microscopy (FESEM and HRTEM). Cu2O-TiO2 nanocomposite was tested on benzene, toluene and chlorobenzene in contaminated water, under UV and under visible light, for effective implementation in photocatalytic degradation of volatile organic contaminants. Results: The said nanocomposite was crystalline and found to be 40–50 nm in size. No apparent change in the crystal lattice of TiO2 was observed due to the introduction of copper ion, and the nanocomposite also retained a high surface area of 76.28 m2/g. The efficiency of the Cu2O-TiO2 nanoparticles degradation was studied both under UV light and under visible. Cu2O-TiO2 nanoparticles achieved 97 – 99% degradation of benzene, 92 – 97% degradation of toluene and 95 – 98% degradation of chlorobenzene in water. Conclusion: The said Cu2O–TiO2 nanocomposite is photo-active and showed an overall 95% degradation within 2 hours of treatment under the visible region.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3