Controlled Alignment of Nanowires for Transparent Conductive Films: Methods and Applications

Author:

Li Zheng1,Li Ruo-Zhou1,Yan Jing1,Yu Ying1,Fang Yuming1

Affiliation:

1. College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, China

Abstract

Background: Nanowires (NWs) have received extensive attention as the candidate materials for transparent conductive films (TCFs) in recent years. To date, the aligned nanowire (NW)-based TCFs with the same arrangement direction have shown superior characteristics to their random counterparts in applications. Objective: To fully develop the potential of NW TCFs in devices and provide inspiration for the development of subsequent NW alignment processes, this review summarizes state-of-the-art alignment techniques and emphasizes their mechanisms in detail from multiple perspectives. Methods: According to the mechanism of NW alignment, this review divides these techniques into seven categories, i.e., the assisted assembly of fluid flow, meniscus, pressure, template, electromagnetic field, contact and strain, and analyzes the characteristics of these techniques. Moreover, by briefly enumerating the applications of aligned NW films in solar cells, organic light-emitting diodes, and touch screens, the superiority of aligned NW films over random NW films is also addressed. Results: Contact-assisted assembly exhibits the best arrangement effect, reaching a 98.6% alignment degree within ±1°. Under the same conditions, shorter NWs show better alignment in several cases. The combination of various assembly techniques is also an effective means to improve the alignment effect. Conclusion: There is still room for improvement in the precise control of NW position, density and orientation in a simple, efficient and compatible process. Therefore, follow-up research work is needed to conquer these problems. Moreover, a process that can realize NW alignment and film patterning simultaneously is also a desirable scheme for fabricating personalized devices.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3