Synthesis and characterisation of super-paramagnetic iron oxide nanoparticles (SPIONs) for minimising Aeromonas hydrophila load from freshwater

Author:

Kumar Munish1,Gupta Gyandeep1,Varghese Tincy1,Shankregowda Aruna M2,Srivastava Prem Prakash1,Bhushan Shashi3,Shukla Satya Prakash4,Krishna Gopal5,Gupta Subodh1

Affiliation:

1. Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai- 400061, India

2. Faculty of Bioscience and Aquaculture Nord University, Bodø, Norway

3. Fisheries Resources, Harvest & Post-Harvest Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai- 400061, India

4. Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai- 400061, India

5. Fish Gnetics & Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai- 400061, India

Abstract

Background: The current study was conducted to prepare an efficient super-paramagnetic iron oxide nanoparticle (SPIONs) to remove Aeromonas hydrophila from water. Methods: The nanoparticles were synthesized by the co-precipitation method and characterized by DLS, UV-Vis spectrophotometer, FT-IR, XRD, FEG-TEM, and VSM analysis. Results and Discussion: The results showed that the synthesized SPIONs were having a size range of 8-12nm with magnetic property. Bacteria removal efficiency and antibacterial activity of SPIONs were assessed in sterile distilled water by adding different concentrations of SPIONs viz. 0, 6.25, 12.5, 25, 50, 100, 200, 500, and 1000µM with different initial bacterial loads viz. 1×103, 1×104, 1×105, 1×106, and 1×107 CFU mL−1 at different time intervals 15, 30, 45, and 60 min. At low bacterial load (1×103 to 1×105 CFU mL−1), 95 to 99.99% of bacteria were removed by low SPIONs concentration (6.25-100µM) by 15min which was increased up to 100% by 30min. However, at high bacterial load (1×106 to 1×107 CFU mL−1), more than 87 to 95% of bacteria were removed by the highest SPIONs concentration (1000µM) by 15min, which was increased above 93 to 99.99% by increasing the exposure time to 60min. At low bacterial load (1×103 to1×105 CFU mL−1), the effective concentration was 3.21 to 6.42µM at 15-60 min intervals. Meanwhile, the effective concentration at high bacterial load was 267.81 µM at 15min, which was decreased to 104.09 µM with increasing exposure time to 60min. Conclusion: Based on the results, it is concluded that the antibacterial effect against A. hydrophila depends on the concentration as well as the exposure time of SPIONs. A low concentration of SPIONs is sufficient to remove 100% of bacterial load in lower exposure time and increasing concentration of SPIONs increases the antibacterial effect. However, further research requires to find the safe concentration of SPIONs for using it as a novel antibacterial agent for the treatment of aeromonads disease in aquaculture.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3