Preparation and Characterization of FeCo2O4 Nanoparticles: A Robust and Reusable Nanocatalyst for the Synthesis of 3,4-Dihydropyrimidin- 2(1H)-thiones and Thiazolopyrimidines

Author:

Mousavi-Moghadam Farah Sadat1,Ghasemzadeh Mohammad Ali1

Affiliation:

1. Department of Chemistry, Qom Branch, Islamic Azad University, Qom, P.O. Box : 37491-13191, I. R, Iran

Abstract

Background:The present research describes a mild and efficient method for the synthesis of 3,4-dihydropyrimidine-2(1H)-thiones and thiazolopyrimidine via multi-component reactions using FeCo2O4 nanoparticles. It was found that FeCo2O4 nanoparticles act as a powerful and effective catalyst. The prepared catalyst was characterized by the various spectroscopic techniques.Objective:The three-component reaction of thiourea, aromatic aldehydes and ethyl acetoacetate was catalyzed by FeCo2O4 nanoparticles. Next, the prepared 3,4-dihydropyrimidin-2(1H)-thiones were applied for the preparation of thiazolopyrimidines via the reactions of 3,4-dihydropyrimidine-2(1H)- thiones, chloroacetic acid, and aromatic aldehydes in the presence of FeCo2O4 nanoparticles.Methods:The FeCo2O4 nanoparticles were synthesized by a facile one-step method and the structure determination of the catalyst has been done using spectral techniques.:Then, the prepared nanocatalyst was used in the synthesis of 3,4-dihydropyrimidin-2(1H)-thiones and thiazolopyrimidines under solvent-free conditions at 80°C.Results:FeCo2O4 nanoparticles as a magnetic nanocatalyst were applied as a catalyst in the synthesis of some heterocyclic compounds in excellent yields and short reaction times. The average particle size of the catalyst is found to be 30-40 nm. The study on the reusability of the FeCo2O4 nanoparticles showed the recovered catalyst could be reused fifth consecutive times. We propose that FeCo2O4 nanoparticles act as a Lewis acid cause to increase electrophilicity of carbonyl groups of substrates and intermediates to promote the reactions.Conclusion:The present research introduced various advantageous including excellent yields, short reaction times, simple workup procedure and recyclability of the FeCo2O4 NPs in order to the synthesis of 3,4-dihydropyrimidin-2(1H)-thiones and thiazolopyrimidines.

Funder

Research Affairs Office of the Islamic Azad University, Qom Branch, Qom, I. R. Iran

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3