Investigation of Electrochemical Nanostructuring with Ultrashort Pulses by Using Nanoscale Electrode

Author:

Liu Yong1,Wu Xiujuan2,Kong Huanghai1

Affiliation:

1. Associated Engineering Research Center of Mechanics & Mechatronic Equipment, Shandong University, Weihai, 264209, China

2. School of Mechanical Engineering, Nanjing Vocational Institute of Industry Technology, Nanjing, 210023, China

Abstract

Background: Electrochemical machining (ECM) is a non-traditional machining method for the metal material based on the principle of anode electrochemical dissolution which has been used in micro/nano fabrication with advantages as not influenced by materials intensity and hardness, no residual stress and no heat treatment born on the surface of the workpiece. Several researches and applications have shown that the surface quality can be improved effectively during the electrochemical machining by using ultrashort pulse power supply. Method: This paper presents a potential of electrochemical machining at the nanometer scale. First, a transient charging double layer mathematical model is developed to describe electrochemical nanostructuring of metallic materials with ultrashort (nanosecond) voltage pulses. And then, by using finite element method (FEM), the analysis model of electrochemical interface between poles is established to give a more realistic analysis of the comparison of transient currents at different separations between the tool and workpiece. Second, a nanoscale electrode is an essential tool in electrochemical nanostructuring. In this paper, electrodes with diameters of several ten to hundred nanometers are successfully prepared by the liquid membrane electrochemical etching. Finally, by using the nanometer scale electrodes above and the ultrashort pulse power supply, several nanostructures with physical dimension of several hundred nanometers are fabricated on nickelbased superalloys. Results: Using the optimal machining parameters, a tool electrode with 230 nm in diameter is obtained from the initial tungsten rod radius of 100 μm. By using 0.05 M H2SO4 solution, the pulse generator with 1μs in period, 100 ns in pulse on-time and 4 V in voltage, a micro/nano groove with the depth of 150 nm and maximum entrance width of 3 μm is obtained. Conclusion: Nanoscale electrodes with diameters of several ten to hundred nanometers is obtained successfully demonstrating that the liquid membrane electrochemical etching is a very effective method to fabricate nanoscale electrode. Several nanostructures with physical dimension of several hundred nanometers can be fabricated successfully demonstrating that ECM with ultrashort pulses is a highly promising nanostructuring technology.

Funder

Natural Science Foundation

Shandong University

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3