Silver Nanoparticle-Based Arrays into Mesoporous Thin Films Structures for Photoelectronic Circuits

Author:

Delgado González Diana Catherine1,Di Donato Andrés1,Catalano Paolo Nicolas1,Bellino Martín Gonzalo1

Affiliation:

1. Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnologia-Comision Nacional de Energia Atomica, CONICET, Buenos Aires, Argentina

Abstract

Background: Silver nanosystems have attracted considerable attention for numerous applications in optoelectronics. The localized surface plasmon of silver nanoparticles embedded into mesoporous titania gives rise to an enhancement of local optical field in the vicinity of Ag nanoparticles which act as efficient light-trapping components, resulting in a visible wavelength-dependent photocurrent. Objective: In this paper, we synthetized patterned nanocomposites formed by titania mesoporous thin films loaded with alkanethiol functionalized Ag nanoparticles and we demonstrated that these stable and accessible nanostructures possess a photocurrent response. Method: Mesoporous thin films are created by combining sol-gel synthesis and template selfassembly. Based on a photolithography technique, silver nanoparticles were selectively photodeposited and then stabilized with octanethiols. Current vs. voltage curves with and without light were compared, where selective light wavelength measurements were achieved by using visible bandpass filters. The optofluidic behavior was evaluated by placing a drop of solutions on the mesoporous film. Results: We demonstrate photocurrent in these mesoporous thin film structures decorated with chemistabilized Ag nanoparticle-based conductive arrays, with significantly enhanced photocurrent peak at the plasmon resonant wavelength around 540 nm. Our findings offer a possibility to perform improved fluid detection with silver-mesoporous titania electronic devices. Conclusion: We showed that an optofluidic sensitive nanocomposite circuit consisting of alkanethiol- functionalized metal nanoparticles embedded in a mesoporous oxide thin film matrix can be produced.

Funder

ANPCyT

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Green Synthesis: A Land of Complex Nanostructures;Current Pharmaceutical Biotechnology;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3