Deposition of Cr Atoms Using Switching-Detuning Light Mask for Direct Atom Lithography

Author:

Zhu Li1,Deng Xiao2,Liu Jie1,Cheng Xinbin1,Li Tongbao1

Affiliation:

1. School of Physics and Engineering, Tongji University, Shanghai, 200092, China

2. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

Abstract

Background: As progress on the nanofabrication has made semiconductor developed rapidly, there is an increasing need in precise pitch standards to calibrate the structure of devices at nanoscale. Nano-gratings fabricated by atom lithography are unique and suitable to act as precise pitch standard because its pitch distance is directly traceable to a natural constant. As the scaling down of nano-devices, it is very challenging to double the spatial frequency of nano-grating while keeping the self-traceability in atom lithography. Methods: In this study, the switching-detuning light mask is utilized for Cr atom lithography. During a single deposition process, the standing wave frequency is switching from positive detuning to negative detuning alternatively. Results: Nano-gratings fabricated using switching-detuning light mask is successfully replicated with double spatial frequency and self-traceability. Non-uniformity between neighboring Cr lines shows up with a corrected pitch of 107.15 Conclusion: Non-uniformity is mainly caused by the dipole force discrepancy between positive and negative detuning light mask. Therefore, to increase the high uniformity of nano-gratings, the deposition time of negative detuning should be at least twice as the positive detuning. On the other hand, to reduce the pitch uncertainty, it is necessary to reduce the distance between the atom beam and reflection mirror as close as possible. These two significant optimization designs are promising to increase the spatial frequency doubling performance with high uniformity and accuracy.

Funder

Young Scientists Fund of the National Natural Science Foundation of China

National Key Scientific Instrument and Equipment Development Project of China

National Key Research and Development Program of China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3