Efficient Ni(OH)2 Supported Ultra-Low Content of Pt Electrocatalyst for Ethanol Oxidation in Alkaline Solution

Author:

Yan Zhaoxiong1,Lu Mengsha1,Li Qin1,An Liang1,Xu Zhihua1,Zhu Lihong2

Affiliation:

1. Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, and Hubei Key Laboratory of Industrial Fume and Pollution Control, Jianghan University, Wuhan 430056, China

2. Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China

Abstract

Background: Direct ethanol fuel cells have gained considerable attention as promising sustainable green power sources for portable electronic devices and automotive propulsion systems. The electrocatalyst is one of the key parameters in DEFCs. However, the current electrocatalyst still suffers from high price due to a relatively large amount of noble metal used, or relatively low activity if non-noble metal was employed. Therefore, the design and fabrication of high-efficient electrocatalyst with low-content of noble metal is still of interest. Methods: Methods: Ni(OH)2 nanoflakes supported ultra-low content of Pt (Pt/Ni(OH)2) electrocatalyst was obtained via microemulsion, impregnation and chemical reduction processes. The Pt/Ni(OH)2 electrocatalyst was characterized by SEM, TEM, XRD and FTIR, and its performance for ethanol electro- oxidation was evaluated by cyclic voltammetry, Tafel and current-time curves. Results: TEM result showed that Pt NPs with sizes of ca. 4-6 nm were highly dispersed on the Ni(OH)2 nanoflakes, indicative of the successful preparation of Pt/Ni(OH)2. No peaks related to Pt NPs were observed in the XRD pattern of Pt/Ni(OH)2, revealing a low content and/or high dispersion of Pt NPs. The electrochemical investigation showed that the Pt/Ni(OH)2 electrode presented a superior catalytic performance and stability for ethanol electro-oxidation in alkaline solution. Conclusion: The Pt/Ni(OH)2 electrode with nominal 0.62 wt.% of Pt was successfully synthesized and showed an excellent catalytic activity and stability toward ethanol electro-oxidation mainly due to its porous structure, high dispersion of Pt and formation of NiOOH facilitating oxidation of ethanol. The acetate species was the major product during ethanol electro-oxidation.

Funder

"National Natural Science Foundation of China"

Wuhan Morning Light plan of Youth Science and technology

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3