A Study on the Effects of Multiwall Carbon Nanotubes on Dynamic Stiffness of Hydrophilic-base Magnetorheological Gel

Author:

Kim Young-Keun1,Kim Jangheon2,Jang Daeik3,Kim Soohyun2,Jung Wonsuk4

Affiliation:

1. Department of Mechanical and Control Engineering, Handong Global University, Pohang, Kyung-Buk 375-554, South Korea

2. Department of Mechanical Engineering, KAIST, Daejeon 305-701, South Korea

3. School of Civil and Environmental Engineering, KAIST, Daejeon 305-701, South Korea

4. School of Mechanical Engineering, Chungnam National University, Daejeon 305-764, South Korea

Abstract

Background: Recently, addition of multi-walled-carbon-nanotubes (MWCNTs) has been researched to enhance the rheological properties of magnetorheological (MR) materials of fluid, elastomer and gel. However, there is a lack of study on the effects of MWCNTs on hydrophilic based MR gels (MRG), which have shown a high potential to be applied in smart vibration control systems. Objective: This study is aimed to analyze the effect of MWCNTs on the dynamic stiffness of hydrophilic based MRG. Method: Dynamic stiffness of hydrophilic based MRG was experimentally computed under different magnetic fields and strain amplitudes. Results: Experimental results indicate that the addition of MWCNTs in hydrophilic MRG showed overall degradation of stiffness variation in contradictory to similar research performed on silicon oil based MR gel. Conclusion: These contradictory results reveal that MRGs of hydrophilic base have a different interaction with MWCNTs than hydrophobic oil base.

Funder

National Research Foundation of Korea (NRF)

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3