Experimental Study on the Stability and Viscosity for the Blends of Functionalized MWCNTs with Refrigeration Compressor Oils

Author:

Dalkilic Ahmet Selim1,Mahian Omid2,Kucukyildirim Bedri Onur3,Eker Aysegul Akdogan3,Ozturk Tarik Hamza1,Jumpholkul Chaiwat2,Wongwises Somchai2

Affiliation:

1. Heat and Thermodynamics Division, Department of Mechanical Engineering, Faculty of Mechanical Engineering, Yildiz Technical University (YTU), Yildiz, Besiktas, Istanbul 34349, Turkey

2. Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand

3. Materials Science and Manufacturing Technologies Division, Department of Mechanical Engineering, Yildiz Technical University (YTU), Yildiz, Besiktas, Istanbul 34349, Turkey

Abstract

Background: Adding nanoparticles to working fluids such as compressor oil can be a solution to ameliorate the efficiency of refrigeration systems. Using the mixture of nanoparticles and oil that is called nanolubricant (or nanofluid) can augment the heat removal in refrigeration systems, however, in the same time, the pumping power will be increased as the viscosity of nanolubricants is higher than that of usual oils. Therefore, the measurement of nanolubricant viscosity is a prerequisite to estimating the pumping power in refrigeration systems. Methods: Experiments section has been divided into three sections. First, the functionalization method of MWCNTs is presented. Then, the preparation of nanolubricants is explained. Finally, the viscosity measurement approach is explained. Results: To increase the dispersibility of MWCNTs in compressor oil, functionalization of MWCNTs was done through attaching −OH and −COOH groups with the aid of 65 wt% nitric acid solution. It was observed that with increasing the viscosity of the base oil, the stability of MWCNTs based nanofluids improves. Then, the viscosity of nanofluids has been measured at a temperature range of 15°C to 50°C. It was found that at 50°C and mass concentration of 0.1%, viscosity enhances between 40 and 90%, depends on the type of base compressor oil. Conclusion: Four correlations involving plane, paraboloid, Gaussian, and Lorentzian functions were suggested for the viscosity of nanolubricants. In the near future, it is expected from the results of this study that refrigeration systems will have included their Freon based refrigerants with nanoparticles.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3