Artificial Neural Network Modelling of Green Synthesised Silver Nanoparticles in Bentonite/Starch Bio-Nanocomposite

Author:

Thapliyal Anupama1,Khar Roop Krishen2,Chandra Amrish1

Affiliation:

1. Amity Institute of Pharmacy, Amity University, Noida, India

2. B.S. Anangpuria Institute of Pharmacy, Haryana, India

Abstract

Background: In this study, computational Artificial Neural Network (ANN) model is applied for optimisation and evaluation of silver nanoparticles (AgNPs) size in the bionanocomposite matrix. The primary purpose of this study is used a feed-forward ANN model to create a connection between the output as the size of Ag–NPs, with four inputs variables, including AgNO3 concentration, the weight percentage of starch, Bentonite amount and Gallic acid concentration. Method: Silver nanoparticles were synthesised via biogenic green reduction method. The fast Levenberg– Marquardt (LM) backpropagation algorithm applied for the training of ANN model in this research. The optimised ANN is a multilayer perceptron (MLP) which is a kind of feed forward (4- 10-1) network has an input layer with 4 nodes, hidden layers with 10 neurones, and an output layer with 1 node found a fitness function. Results: The output results of developed computational ANN model were compared to its predictive values of the size of silver nanoparticles regarding two statistical parameters, the coefficient of determination (R2) and mean square error (MSE) of data set. It observed that ANN predicted values are close to the actual values and well fitted to the data. The mean square error(MSE) is 0.03, and a regression is about 1. Conclusion: AgNO3 concentration has the most likely factor affecting the size of silver nanoparticles (Ag–NPs) and this makes possible to develop a green reduction method for the preparation of silver nanoparticles. This study confirms that employing ANN method with LM feed forward (4-10-1) network is a useful tool with cost-effective for predicting the results of analysis and modelling of the chemical reactions.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3