Affiliation:
1. Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603 103, India
Abstract
:
Conventional treatment modalities for tumors face a variety of pitfalls including non-specific interactions leading to multiple adverse effects. These adverse effects are being overcome through innovations that are highly intense and selective delivery of therapeutic agents. More recently, Photodynamic therapy (PDT) has gained its value over conventional chemo- and radiotherapies due to the use of photosensitizers (PS) with an illuminating light source. Photosensitizers have crossed three generations with Photofrin being the first clinically approved PS for PDT. Even though these PS have proved to have cytotoxic effects against tumor cells, they suffer the selective distribution and concentration into the tumor sites that are deeply localized. To overcome these disadvantages, nanoformulations are currently being employed due to their unmatched physicochemical and surface properties. These nanoformulations include the encapsulation of PS acting as a nanocarrier for the PS or the functionalization of PS onto the surface of nanoparticles. The design of such nanoformulations involved in PDT is critical and valuable to consider. Along with PDT, several multifunctional approaches are being uplifted in the current trend where combined therapy and diagnosis are of importance. Furthermore, targeted, selective and specific delivery of the PS-loaded nanoformulations with receptor-mediated endocytosis is of interest to achieve better internalization into the tumor site. ROS generation with the interaction of PS augments cell death mechanisms exhibited due to PDT leading to the immunogenic response that further results an adaptive immune memory which prevents recurrence of tumor metastasis. Therefore, this review concentrates on the mechanisms of PDT, examples of nanocarriers and nanoparticles that are employed in PDT, combined therapies, and theranostics with PDT. A step forward, molecular mechanisms of nano-based PDT agents in killing tumor sites and design considerations for better PDT outcomes have been discussed.
Publisher
Bentham Science Publishers Ltd.
Subject
Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献