A Systematic Review on Pesticide-loaded Nanocapsules: A Sustainable Route for Pesticide Management to Enhance Crop Productivity

Author:

Kumar Sumit1,Bhuvaneshwari R1,Jain Sejal1,Nirwan Shweta1,Fatima Zainab1,Kumar Dharmender1,Chhikara Bhupendra S.2,Rathi Brijesh34,Poonam 14ORCID

Affiliation:

1. Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, 110007, India

2. Department of Chemistry, Aditi Mahavidyalaya, University of Delhi, Bawana, Delhi, 110039, India

3. Department of Chemistry, Har Gobind Khorana Centre for Chemical Biology, Hansraj College, University of Delhi, Delhi, India

4. Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi, 110007, India

Abstract

Abstract: Synthetic pesticides, crucial compounds for agricultural production, degrade quickly and damage the environment, hence solutions for their decreased usage or formulations with prolonged efficacy at low dosages are needed. Nanotechnology for nanosized formulations may reduce pesticide adverse effects. Nano-encapsulated pesticides made from nanocapsules, nanoemulsions, micelles, and nanogels outperform traditional pesticides with minimum environmental impact. Nanopesticides allowed target-based administration to decrease leaching and drainage into water bodies, and lower pesticide active component dosages. Nanocapsules with a core-shell configuration and a pesticide in the core are the most advantageous nanomaterials. Nanocapsules shield the active component. Stimuli-responsive nanocapsules may limit pesticide release by responding to pH, temperature, light, enzyme, or redox reactions. Toxicity prevents their use. This review discusses the latest developments in nanocapsule fabrication methods, their relevance, contemporary synthetic approaches to developing pesticide-loaded nanocapsules, and the features of these nanocomposites, with an emphasis on sustainable agricultural applications.

Funder

Department of Science and Technology, Government of India

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3