Surface Modification of Electrospun Polyethylenimine/Polyvinyl Alcohol Nanofibers Immobilized with Silver Nanoparticles for Potential Antibacterial Applications

Author:

Xiao Yunchao1,Ma Hui1,Fang Xu1,Huang Yunpeng1,Liu Pengchao1,Shi Xiangyang1

Affiliation:

1. Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China

Abstract

Objective: In order to investigate the potential biomedical applications of silver nanoparticle (Ag NP)-immobilized electrospun nanofibers with different surface functionalities. Methods: Silver nanoparticles were immobilized within water-stable electrospun polyethylenimine (PEI)/polyvinyl alcohol (PVA) nanofibers by an in-situ reduction method after complexing Ag+. ions with the free PEI amine groups. The obtained Ag NP-incorporated PEI/PVA nanofibers were then hydroxylated, carboxylated, and acetylated to generate different surface functionalities. Different techniques were employed to characterize the Ag NP-containing nanofibers with different surface functionalities. Results: In vitro antibacterial activity tests show that Ag NP-containing nanofibrous mats have high antibacterial activity and are capable of inhibiting the growth of both S. aureus and E. coli bacteria. Cell viability assay data show that the Ag NP-containing nanofibers are cytocompatible, and those treated by hydroxylation and acetylation display better cytocompatibility than those treated by carboxylation and the pristine non-modified fibers to promote cell adhesion and proliferation. Conclusion: Therefore, the hydroxylated or acetylated Ag NP-containing PEI/PVA nanofibers have a great potential for wound dressing, biological protection and tissue engineering applications.

Funder

Donghua University

Shanghai Education Commission

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3