Improved K-means Clustering Algorithm and its Applications

Author:

Qi Hui1,Li Jinqing1,Di Xiaoqiang1,Ren Weiwu1,Zhang Fengrong2

Affiliation:

1. School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China

2. Northeast Normal University, Changchun, China

Abstract

Background: K-means algorithm is implemented through two steps: initialization and subsequent iterations. Initialization is to select the initial cluster center, while subsequent iterations are to continuously change the cluster center until it won't change any more or the number of iterations reaches its maximum. K-means algorithm is so sensitive to the cluster center selected during initialization that the selection of a different initial cluster center will influence the algorithm performance. Therefore, improving the initialization process has become an important means of K-means performance improvement. Methods: This paper uses a new strategy to select the initial cluster center. It first calculates the minimum and maximum values of the data in a certain index (For lower-dimensional data, such as twodimensional data, features with larger variance, or the distance to the origin can be selected; for higher-dimensional data, PCA can be used to select the principal component with the largest variance), and then divides the range into equally-sized sub-ranges. Next adjust the sub-ranges based on the data distribution so that each sub-range contains as much data as possible. Finally, the mean value of the data in each sub-range is calculated and used as the initial clustering center. Results: The theoretical analysis shows that although the time complexity of the initialization process is linear, the algorithm has the characteristics of the superlinear initialization method. This algorithm is applied to two-dimensional GPS data analysis and high-dimensional network attack detection. Experimental results show that this algorithm achieves high clustering performance and clustering speed. Conclusion: This paper reduces the subsequent iterations of K-means algorithm without compromising the clustering performance, which makes it suitable for large-scale data clustering. This algorithm can not only be applied to low-dimensional data clustering, but also suitable for highdimensional data.

Funder

Science and Technology Planning Project of Jilin Province

National Social Science Fund of China

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3