A Study of Federated Learning with Internet of Things for Data Privacy and Security using Privacy Preserving Techniques

Author:

Shakeer Shaik Mahamad1ORCID,Babu Madda Rajasekhara1

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India

Abstract

Abstract: Privacy leakage that occurs when many IoT devices are utilized for training centralized models, a new distributed learning framework known as federated learning was created, where devices train models together while keeping their private datasets local. In a federated learning setup, a central aggregator coordinates the efforts of several clients working together to solve machine learning issues. The privacy of each device's data is protected by this setup's decentralized training data. Federated learning reduces traditional centralized machine learning systems' systemic privacy issues and costs by emphasizing local processing and model transfer. Client information is stored locally and cannot be copied or shared. By utilizing a centralized server, federated learning enables each participant's device to collect data locally for training purposes before sending the resulting model to the server for aggregate and subsequent distribution. As a means of providing a comprehensive review and encouraging further research into the topic, we introduce the works of federated learning from five different vantage points: data partitioning, privacy method, machine learning model, communication architecture, and systems heterogeneity. Then, we organize the issues plaguing federated learning today and the potential avenues for a prospective study. Finally, we provide a brief overview of the features of existing federated knowledge and discuss how it is currently being used in the field.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Privacy and Security in Autonomous Connected Vehicles in Smart City Environment;Big Data and Cognitive Computing;2024-08-23

2. HAR Data Analysis: Unveiling the Potential of Federated CNN Models;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3