Analysis and Optimization of Sb2Te3 and Bi2Te3 Materials for Enhancing the Performance of Thermoelectric Energy Harvester for WSN Applications

Author:

Verma Gourav1,Sharma Vidushi2

Affiliation:

1. Electronics and Communication Department, Gourav Verma, Graphic Era University, Clement Town, Dehradun, Uttarakhand, India

2. SoICT, Gautam Buddha University, Greater Noida, India

Abstract

Background: Thermoelectric (TE) materials are used to fabricate the thermoelectric generator (TEG). Thermoelectric Generator (TEG) is used to convert thermal energy into electrical energy and vice-versa. Bismuth-Telluride and Antimony Telluride (Bi/Sb)2Te3 alloys are popular in the research community due to its capability of electrical energy generation in the range of room temperature. The Phase Change Material (PCM) is a good source of thermal energy storage in thermal energy harvesting. We have reviewed patents having the information of thermal energy storage and tried to provide a better cost-effective solution in thermal energy harvesting using Phase Change Material (PCM) and material used in thermoelectric generator. Finding the most appropriate TE alloy for a particular application is a challenge in the research community. Objective: The objective of this paper is to conduct a study and analysis of performance parameter of (Bi/Sb)-Te based TE alloy along with the effect of Phase Change Material (PCM) on energy generation. Methods: An investigation over a wide range of temperature is performed. A Bi2Te3 based Commercial- of-the-shelf (COTS) Thermoelectric Generator (TEG) has been experimentally tested in a controlled temperature environment for the analysis of its efficiency. Results: This is found that maximum efficiency of 2.12% is achieved at a temperature difference of 60°C. Conclusion: This investigation will be useful for the selection of material for thermal energy harvesting techniques and helps to provide an optimized framework for the research community to decide the (Bi1-xSbx)2Te3 mixed crystal alloy for their applications.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3