Adaptive Framework for Deep Learning Based Dynamic and Temporal Topic Modeling from Big Data

Author:

Pathak Ajeet R.1,Pandey Manjusha1,Rautaray Siddharth1

Affiliation:

1. School of Computer Engineering, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar 751024, India

Abstract

Background: The large amount of data emanated from social media platforms need scalable topic modeling in order to get current trends and themes of events discussed on such platforms. Topic modeling play crucial role in many natural language processing applications like sentiment analysis, recommendation systems, event tracking, summarization, etc. Objective: The aim of the proposed work is to adaptively extract the dynamically evolving topics over streaming data, and infer the current trends and get the notion of trend of topics over time. Because of various world level events, many uncorrelated streaming channels tend to start discussion on similar topics. We aim to find the effect of uncorrelated streaming channels on topic modeling when they tend to start discussion on similar topics. Methods: An adaptive framework for dynamic and temporal topic modeling using deep learning has been put forth in this paper. The framework approximates online latent semantic indexing constrained by regularization on streaming data using adaptive learning method. The framework is designed using deep layers of feedforward neural network. Results: This framework supports dynamic and temporal topic modeling. The proposed approach is scalable to large collection of data. We have performed exploratory data analysis and correspondence analysis on real world Twitter dataset. Results state that our approach works well to extract topic topics associated with a given hashtag. Given the query, the approach is able to extract both implicit and explicit topics associated with the terms mentioned in the query. Conclusion: The proposed approach is a suitable solution for performing topic modeling over Big Data. We are approximating the Latent Semantic Indexing model with regularization using deep learning with differentiable ℓ1 regularization, which makes the model work on streaming data adaptively at real-time. The model also supports the extraction of aspects from sentences based on interrelation of topics and thus, supports aspect modeling in aspect-based sentiment analysis.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering

Reference32 articles.

1. Pathak A.R.; Pandey M.; Rautaray S.; Construing the big data based on taxonomy, analytics and approaches. Iran J Comput Sci 2018,1(4),237-259

2. "Forecast for the text analytics market by 2022" 2017

3. Blei D.M.; Ng A.Y.; Jordan M.I.; Latent dirichlet allocation. J Mach Learn Res 2003,3(Jan),993-1022

4. Deerwester S.; Dumais S.T.; Furnas G.W.; Landauer T.K.; Harshman R.; Indexing by latent semantic analysis. J Am Soc Inf Sci 1990,41(6),391-407

5. Hofmann T.; Probabilistic latent semantic analysis Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence 1999,289-296

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3