DDoS Attack Detection in Software Defined Networks by various Metrics

Author:

Saadallah Noor Raad1ORCID,Al-Talib Sahar Abdul Aziz1ORCID,Malallah Fahad Layth1ORCID

Affiliation:

1. Computer and Information Department, College of Electronics Engineering, University of Ninevah, Mosul, Iraq

Abstract

Background: Software-Defined Networks (SDNs) are a new architectural approach to smart centralized control networks that were introduced alongside Open Flow in 2011. SDNs are programmed using software applications that help operators manage the network in a fully consistent and comprehensive way. Centralization in these networks is considered a weakness, especially if it is accessed by a Distributed Denial of Service (DDoS) attack - which is the process of uploading huge floods of various sorts of traffic to a website, from multiple sources, in order to make it and its services inaccessible to users. Method: In our current research, we will build an SDN through a Mininet virtualization simulator, and by using Python. A DDoS attack will be detected depending on two facts: firstly, Traffic State - which normally sees traffic packets sent at around 30 packets per second (DDoS packets are about 250 packets per second and will completely disrupt the network if the attack persists). Secondly, the number of IP Hits. The method used in the research appears very effective in detecting DDoS, according to the results we have achieved. Result: The proposed performance of the system: The Precision (PREC), Recall (REC), and F-Measure (F1) metrics have been used for assessment. Conclusion: The novelty of the current research lies in the detection of penetration in SDN networks, by calculating the number of hits by the hacker's device and the number of times they enter the main device in the network, in addition to the large amount of data sent by the hacker's device to the network. The experimental results are promising as compared with the datasets like CIC-DoS, CICIDS2017, CSE-CIC-IDS2018, and customized dataset. The results ranged between 90% and 96%.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Denial of Service Attack Detection and Mitigation using Ensemble based ML in Software Defined Network;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

2. Mathematical modeling analysis of potential attack detection in topology network based on convolutional neural network;Journal of Computational Methods in Sciences and Engineering;2023-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3