Implication of B23/NPM1 in Viral Infections, Potential Uses of B23/NPM1 Inhibitors as Antiviral Therapy

Author:

Lobaina Yadira1,Perera Yasser2

Affiliation:

1. Therapeutic Hepatitis B Vaccine Group, Vaccine Division, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, CP 10600, Cuba

2. Molecular Oncology Group, Pharmaceuticals Division, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, CP 10600, Cuba

Abstract

Background:B23/nucleophosmin (B23/NPM1) is an abundant multifunctional protein mainly located in the nucleolus but constantly shuttling between the nucleus and cytosol. As a consequence of its constitutive expression, intracellular dynamics and binding capacities, B23/NPM1 interacts with multiple cellular factors in different cellular compartments, but also with viral proteins from both DNA and RNA viruses. B23/NPM1 influences overall viral replication of viruses like HIV, HBV, HCV, HDV and HPV by playing functional roles in different stages of viral replication including nuclear import, viral genome transcription and assembly, as well as final particle formation. Of note, some virus modify the subcellular localization, stability and/or increases B23/NPM1 expression levels on target cells, probably to foster B23/NPM1 functions in their own replicative cycle.Results:This review summarizes current knowledge concerning the interaction of B23/NPM1 with several viral proteins during relevant human infections. The opportunities and challenges of targeting this well-conserved host protein as a potentially new broad antiviral treatment are discussed in detail. Importantly, although initially conceived to treat cancer, a handful of B23/NPM1 inhibitors are currently available to test on viral infection models.Conclusion:As B23/NPM1 partakes in key steps of viral replication and some viral infections remain as unsolved medical needs, an appealing idea may be the expedite evaluation of B23/NPM1 inhibitors in viral infections. Furthermore, worth to be addressed is if the up-regulation of B23/NPM1 protein levels that follows persistent viral infections may be instrumental to the malignant transformation induced by virus like HBV and HCV.

Publisher

Bentham Science Publishers Ltd.

Subject

Microbiology (medical),Pharmacology,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3