In Vitro Antifungal Activity of Green Synthesized Silver Nanoparticles in Comparison to Conventional Antifungal Drugs Against Trichophyton Interdigitale, Trichophyton Rubrum and Epidermophyton Floccosum

Author:

Mahmoudi Shahram1,Vahidi Mahmoud1,Malekabad Ebadollah Shiri2,Izadi Alireza3,Khatami Mehrdad4,Dadashi Alireza5

Affiliation:

1. Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Aja University of Medical Sciences, Tehran,Iran

2. Department of Social Medicine, School of Medicine, Aja University of Medical Sciences, Tehran,Iran

3. Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran,Iran

4. Nano Bio Electrochemistry Research Center, Bam University of Medical Sciences, Bam,Iran

5. Department of Infectious Diseases, School of Medicine, Aja University of Medical Sciences, Tehran,Iran

Abstract

Background: Dermatophytosis is a globally distributed fungal infection. Treatment failure and relapse is common in this disease. Silver nanoparticle are known for their promising antimicrobial activity. The aim of this study was to determine the antifungal activity of these nanoparticles against common dermatophyte species. Methods: A set of 30 molecularly identified dermatophytes including Trichophyton interdigitale (n=10), Trichophyton rubrum (n=10), and Epidermophyton floccosum (n=10) were used in this study. Green synthesized silver nanoparticles using chicory (Cichorium intybus) were tested for their antifungal activity in comparison to fluconazole, itraconazole and terbinafine. Interspecies differences in minimum inhibitory concentrations of antifungal drugs and silver nanoparticles were tested using Kruskal–Wallis test in SPSS software version 21. Results: The highest minimum inhibitory concentrations (MICs) among antifungal drugs were observed for fluconazole [range: 4–64 μg/mL, geometric mean (GM) =17.959 μg/mL], followed by itraconazole (range: 0.008–0.5, GM= 0.066) and terbinafine (range: 0.004–0.25 μg/mL, GM=0.027 μg/mL). Silver nanoparticles showed potent antifungal activity against all dermatophyte isolates with MICs (range: 0.25–32 μg/mL, GM=4.812 μg/mL) higher than those of itraconazole and terbinafine, but lower than fluconazole. : MIC values of silver nanoparticles demonstrated significant differences between species (P=0.044), with E. floccosum having the highest MICs (GM=9.849 μg/mL) compared to T. interdigitale (GM=3.732 μg/mL) and T. rubrum (GM=3.031 μg/mL). Conclusion: Silver nanoparticles demonstrated promising anti-dermatophyte activity against the studied dermatophytes. Due to their wide-spectrum activity against other fungal and bacterial pathogens, they could be a potential choice, at least in the case of cutaneous and superficial infections.

Funder

Aja University of Medical Sciences

Publisher

Bentham Science Publishers Ltd.

Subject

Microbiology (medical),Pharmacology,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3