Mechanistic Insights into the Anticandidal Action of Vanillin Reveal Disruption of Cell Surface Integrity and Mitochondrial Functioning

Author:

Saibabu Venkata1,Fatima Zeeshan1ORCID,Khan Luqman Ahmad2,Hameed Saif1ORCID

Affiliation:

1. Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413,India

2. Department of Biosciences, Jamia Millia Islamia, New Delhi-110025,India

Abstract

Background: Considering the emergence of multidrug resistance (MDR) in prevalent human fungal pathogen, Candida albicans, there is parallel spurt in development of novel strategies aimed to disrupt MDR. Compounds from natural resources could be exploited as efficient antifungal drugs owing to their structural diversity, cost effectiveness and negligible side effects. Objective: The present study elucidates the antifungal mechanisms of Vanillin (Van), a natural food flavoring agent against Candida albicans. Methods: Antifungal activities were assessed by broth microdilution and spot assays. Membrane and cell wall perturbations were studied by PI uptake, electron microscopy, plasma membrane H+ extrusion activity and estimation of ergosterol and chitin contents. Mitochondrial functioning was studied by growth on non-fermentable carbon sources, rhodamine B labeling and using retrograde signaling mutants. Gene expressions were validated by semi-quantitative RT-PCR. Results: We observed that the antifungal activity of Van was not only limited to clinical isolates of C. albicans but also against non-albicans species of Candida. Mechanistic insights revealed effect of Van on cell surface integrity as evident from hypersensitivity against membrane perturbing agent SDS, depleted ergosterol levels, transmission electron micrographs and diminished plasma membrane H+ extrusion activity. In addition, spot assays with cell wall perturbing agents, scanning electron micrographs, delayed sedimentation rate and lower chitin content further substantiate cell wall damage by Van. Furthermore, Van treated cells underwent mitochondrial dysfunctioning via impaired retrograde signaling leading to abrogated iron homeostasis and DNA damage. All the perturbed phenotypes were also validated by RT-PCR depicting differential regulation of genes (NPC2, KRE62, FTR2 and CSM3) in response to Van. Conclusion: Together, our results suggested that Van is promising antifungal agent that may be advocated for further investigation in therapeutic strategies to treat Candida infections.

Publisher

Bentham Science Publishers Ltd.

Subject

Microbiology (medical),Pharmacology,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3