Integrated Cheminformatics-Molecular Docking Approach to Drug Discovery Against Viruses

Author:

Anwar Muhammad Faraz1,Khalid Ramsha2,Hasanain Alina3,Naeem Sadaf2,Zarina Shamshad1,Abidi Syed Hani4,Ali Syed5

Affiliation:

1. National Center for Proteomics, University of Karachi, Karachi, Pakistan

2. Department of Biochemistry, University of Karachi, Karachi, Pakistan

3. Medical College, Aga Khan University, Karachi, Pakistan

4. Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan

5. Department of Biomedical Sciences, Nazarbayev University School of Medicine, Nazarbayev University, Astana, Kazakhstan

Abstract

Background: In the current study, we present an integrated in silico cheminformaticsmolecular docking approach to screen and test potential therapeutic compounds against viruses. Fluoroquinolones have been shown to inhibit HCV replication by targeting HCV NS3-helicase. Based on this observation, we hypothesized that natural analogs of fluoroquinolones will have similar or superior inhibitory potential while having potentially fewer adverse effects. Methods: To screen for natural analogs of fluoroquinolones, we devised an integrated in silico Cheminformatics-Molecular Docking approach. We used 17 fluoroquinolones as bait reference, to screen large databases of natural analogs. 10399 natural compounds and their derivatives were retrieved from the databases. From these compounds, molecules bearing physicochemical similarities with fluoroquinolones were analyzed using a cheminformatics-docking approach. Results: From the 10399 compounds screened using our cheminformatics approach, only 20 compounds were found to share physicochemical similarities with fluoroquinolones, while the remaining 10379 compounds were physiochemically different from fluoroquinolones. Molecular docking analysis showed 32 amino acids in the HCV NS3 active site that were most frequently targeted by fluoroquinolones and their natural analogues, indicating a functional similarity between the two groups of compounds. Conclusion: This study describes a speedy and inexpensive approach to complement drug discovery and design against viral agents. The in silico analyses we used here can be employed to shortlist promising compounds/putative drugs that can be further tested in wet-lab.

Publisher

Bentham Science Publishers Ltd.

Subject

Microbiology (medical),Pharmacology,Molecular Medicine,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3