Computer Aided Design of Non-toxic Antibacterial Peptides

Author:

Rondon-Villarreal Paola1,Pinzon-Reyes Efrain1

Affiliation:

1. Medicine Department, Molecular Biology and Biotechnology Lab, Masira Research Center, Universidad de Santander, Bucaramanga, Colombia

Abstract

Antimicrobial resistance is increasing at an alarming rate and the number of new antibiotics developed and approved has decreased in the last decades, basically for economic and regulatory obstacles. Pathogenic bacteria that are resistant to multiple or all available antibiotics are isolated frequently. Hence, new antibacterial agents are urgently needed and antimicrobial peptides are being considered as a potential solution to this important threat. These molecules are small host defense proteins that are part of the immune systems of most living organisms such as plants, bacteria, invertebrates, vertebrates, and mammals. These peptides are found in those parts of organisms that are exposed to pathogens and they are active against multiple organisms such as virus, bacteria, and parasites, among others. This review shows different strategies in the computational design of new antibacterial peptides, the physicochemical properties that are considered as the most relevant for the antibacterial activity and toxicity, and it suggests guidelines in order to help in the finding of new non-toxic antibacterial peptides through the development of computational models.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence-Mediated Computer-Aided Design of Viral Gene Therapies;GEN Biotechnology;2023-12-01

2. Protein kinase inhibitors as therapeutics in neurodegenerative and psychiatric disorders;Receptor Tyrosine Kinases in Neurodegenerative and Psychiatric Disorders;2023

3. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy;Frontiers in Cellular and Infection Microbiology;2020-07-07

4. Designing and optimizing new antimicrobial peptides: all targets are not the same;Critical Reviews in Clinical Laboratory Sciences;2019-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3