Affiliation:
1. Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. 05508-000, São Paulo, Brazil
Abstract
Abstract:
Determining the amount of medication used is essential for correctly managing treatment systems. The unauthorized use of drugs and the importance of determining the absorbed and re-quired dose of drugs in target organs are essential factors that justify the design of new drug moni-toring systems. Electrochemical sensors and biosensors based on nanomaterials have been devel-oped for drug monitoring in the past few years. The use of nanomaterials to optimize the analyte de-tection process and facilitate electron transfer in electrochemical processes has enhanced intermo-lecular interactions and increased diagnostic sensitivity. Considering this review, in the first part, the evaluation of cancer drugs is examined, which can be used to determine the exact dose of the drug required in different stages of cancer. Accurate monitoring of cancer drugs can increase patient life expectancy, reduce side effects, and increase economic savings. In the next section, sensors and biosensors designed for antibiotics are examined. Accurate measurement of antibiotics for deter-mining the effectiveness of the dose in controlling infections and preventing antibiotic resistance is possible with the help of these drug diagnostic platforms. In the next part, the diagnosis of different hormones is considered. Abnormal amounts (low/high) of hormones cause multiple physiological complications and various disabilities. Therefore, accurate determination of hormone levels can ef-fectively treat hormonal changes. In the last section, other drugs, including drugs and analgesics for which the use of electrochemical diagnostic platforms can significantly help drug distribution and social health systems, are also discussed.
Funder
São Paulo Research Foundation-FAPESP
National Council for Research-CNPq
Capes Program, PROEX
Publisher
Bentham Science Publishers Ltd.
Subject
Drug Discovery,General Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献