Affiliation:
1. Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
2. Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
Abstract
Over the past decades, peptide as a therapeutic candidate has received increasing attention in
drug discovery, especially for antimicrobial peptides (AMPs), anticancer peptides (ACPs) and antiinflammatory
peptides (AIPs). It is considered that the peptides can regulate various complex diseases
which are previously untouchable. In recent years, the critical problem of antimicrobial resistance drives
the pharmaceutical industry to look for new therapeutic agents. Compared to organic small drugs, peptide-
based therapy exhibits high specificity and minimal toxicity. Thus, peptides are widely recruited in
the design and discovery of new potent drugs. Currently, large-scale screening of peptide activity with
traditional approaches is costly, time-consuming and labor-intensive. Hence, in silico methods, mainly
machine learning approaches, for their accuracy and effectiveness, have been introduced to predict the
peptide activity. In this review, we document the recent progress in machine learning-based prediction
of peptides which will be of great benefit to the discovery of potential active AMPs, ACPs and AIPs.
Funder
Research Fund for Characteristic Innovation Projects of Guangdong Province
National Natural Science Foundation of China
Publisher
Bentham Science Publishers Ltd.
Subject
Drug Discovery,General Medicine
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献