Mathematical and Computational Techniques for Drug Discovery: Promises and Developments

Author:

Balasubramanian Krishnan1

Affiliation:

1. School of Molecular Sciences, Arizona State University, Tempe AZ 85287-1604, United States

Abstract

We review various mathematical and computational techniques for drug discovery exemplifying some recent works pertinent to group theory of nested structures of relevance to phylogeny, topological, computational and combinatorial methods for drug discovery for multiple viral infections. We have reviewed techniques from topology, combinatorics, graph theory and knot theory that facilitate topological and mathematical characterizations of protein-protein interactions, molecular-target interactions, proteomics, genomics and statistical data reduction procedures for a large set of starting chemicals in drug discovery. We have provided an overview of group theoretical techniques pertinent to phylogeny, protein dynamics especially in intrinsically disordered proteins, DNA base permutations and related algorithms. We consider computational techniques derived from high level quantum chemical computations such as QM/MM ONIOM methods, quantum chemical optimization of geometries complexes, and molecular dynamics methods for providing insights into protein-drug interactions. We have considered complexes pertinent to Hepatitis Virus C non-structural protein 5B polymerase receptor binding of C5-Arylidebne rhodanines, complexes of synthetic potential vaccine molecules with dengue virus (DENV) and HIV-1 virus as examples of various simulation studies that exemplify the utility of computational tools. It is demonstrated that these combinatorial and computational techniques in conjunction with experiments can provide promising new insights into drug discovery. These techniques also demonstrate the need to consider a new multiple site or allosteric binding approach to drug discovery, as these studies reveal the existence of multiple binding sites.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3