Multi-target Drug Discovery via PTML Modeling: Applications to the Design of Virtual Dual Inhibitors of CDK4 and HER2

Author:

Kleandrova Valeria V.1,Scotti Marcus T.2,Scotti Luciana2,Speck-Planche Alejandro2

Affiliation:

1. Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Volokolamskoe Shosse 11, 125080, Moscow, Russian Federation

2. Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil

Abstract

Background: Cyclin-dependent kinase 4 (CDK4) and the human epidermal growth factor receptor 2 (HER2) are two of the most promising targets in oncology research. Thus, a series of computational approaches have been applied to the search for more potent inhibitors of these cancerrelated proteins. However, current approaches have focused on chemical analogs while predicting the inhibitory activity against only one of these targets, but never against both. Aims: We report the first perturbation model combined with machine learning (PTML) to enable the design and prediction of dual inhibitors of CDK4 and HER2. Methods: Inhibition data for CDK4 and HER2 were extracted from ChEMBL. The PTML model relied on artificial neural networks to allow the classification/prediction of molecules as active or inactive against CDK4 and/or HER2. Results: The PTML model displayed sensitivity and specificity higher than 80% in the training set. The same statistical metrics had values above 75% in the test set. We extracted several molecular fragments and estimated their quantitative contributions to the inhibitory activity against CDK4 and HER2. Guided by the physicochemical and structural interpretations of the molecular descriptors in the PTML model, we designed six molecules by assembling several fragments with positive contributions. Three of these molecules were predicted as potent dual inhibitors of CDK4 and HER2, while the other three were predicted as inhibitors of at least one of these proteins. All the molecules complied with Lipinski’s rule of five and its variants. Conclusion: The present work represents an encouraging alternative for future anticancer chemotherapies.

Funder

Brazilian National Council for Scientific and Technological Development

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3