Structure-Based Virtual Screening for the Identification of High Affinity Compounds as Potent VEGFR2 Inhibitors for the Treatment of Renal Cell Carcinoma

Author:

Sharma Khushboo1,Patidar Khushboo1,Ali Meer Asif1,Patil Pravin1,Goud Himshikha1,Hussain Tajamul2,Nayarisseri Anuraj1,Singh Sanjeev Kumar3

Affiliation:

1. In silico Research Laboratory, Eminent Biosciences, Vijayanagar, Indore – 452010, Madhya Pradesh, India

2. Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia

3. Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India

Abstract

Introduction: Renal Cell Carcinoma is a common type of renal cancer-causing deaths worldwide which is characterized by sustained angiogenesis. VEGF and its receptors play a major role in physiologic and pathologic angiogenesis, which is marked in tumour progression and metastasis development. Induction of VEGF genes occur due to hypoxic condition induced by tumour growth after a critical size in cancerous cell. Signal transduction networks originated by VEGFA/VEGFR2, (a notable ligand-receptor complex in the VEGF system) leads to major angiogenesis events ranging from endothelial cell proliferation, to new vessel formation, Furthermore, differential expression of VEGF-VEGFR mRNA also found in different types of RCC. Aim: The aim of present study is to inhibit the VEGFR2 protein by the action of certain inhibitors and then to search an efficient inhibitor. Materials and Methods: A total of 23 potential inhibitors were searched and used to target the protein using the concept of molecular docking. Among 23 inhibitors, CHEMBL346631 shows best affinity with the target protein and was used for high throughput virtual screening to find similar compounds. The compound obtained from virtual screeningSCHEMBL469307, shows much more better affinity with VEGFR2 than CHEMBL346631. Conclusion: Relative study for both the compounds showed a minor difference in relevant properties. The compound SCHEMBL469307 have a high potential to inhibit the VGFR2 protein and can be backed for future studies in Renal Cell Carcinoma.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3