Computational Modeling on Binding Interactions of Cyclodextrin s with the Human Multidrug Resistance P-glycoprotein Toward Efficient Drug-delivery System Applications

Author:

González-Durruthy Michael12,Concu Riccardo1ORCID,Dias Soeiro Cordeiro Maria Natália1,Osmari Vendrame Laura F.3,Ortiz Martins Mirkos3,Zanella Ivana4,Ruso Juan Manuel2

Affiliation:

1. LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal

2. Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain

3. Post-Graduate Program in Nanoscience, Franciscan University (UFN), 97010-032, Santa Maria, RS, Brazil

4. 3Post-Graduate Program in Nanoscience, Franciscan University (UFN), 97010-032, Santa Maria, RS, Brazil

Abstract

Background: Herein, molecular docking approaches and DFT ab initio simulations were combined for the first time, to study the key interactions of cyclodextrins (CDs: α-CD, β-CD, and γ-CD) family with potential pharmacological relevance and the multidrug resistance P-gp protein toward efficient drug-delivery applications. The treatment of neurological disorders and cancer therapy where the multiple drug-resistance phenomenon mediated by the P-gp protein constitutes the fundamental cause of unsuccessful therapies. Objective: To understand more about the CD docking mechanism and the P-gp. Methods: In order to achieve the main goal, the computational docking process was used. The observed docking-mechanism of the CDs on the P-gp was fundamentally based on hybrid backbone/side-chain hydrophobic interactions,and also hybrid electrostatic/side-chain interactions of the CD-ligands' OH-motifs with acceptor and donor characteristics, which might theoretically cause local perturbations in the TMD/P-gp inter-residues network, influencing ligand extrusion through the blood-brain barrier. P-gp residues were conformationally favored. Despite the structural differences, all the cyclodextrins exhibit very close Gibbs free binding energy values (or affinity) by the P-gp binding site (transmembrane domains - TMDs). Results: The obtained theoretical docking-mechanism of the CDs on the P-gp was fundamentally based on hybrid backbone/side-chain hydrophobic interactions, and also hybrid electrostatic/side-chain interactions of the OH-motifs of the CD-ligands with acceptor and donor properties which theoretically could induce allosteric local-perturbations in the TMDs-inter-residues network of P-gp modulating to the CD-ligand extrusion from the blood-brain-barrier (or cancer cells). Conclusion: Finally, these theoretical results open new horizons for evaluating new nanotherapeutic drugs with potential pharmacological relevance for efficient drug-delivery applications and precision nanomedicine.

Funder

FCT/MCTES

Xunta de Galicia

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3