Synthesis and Antimycobacterial Activity of Isoniazid Derivatives Tethered with Aliphatic Amines

Author:

Krátký Martin1ORCID,Pflégr Václav1ORCID,Stolaříková Jiřina2,Vinšová Jarmila1ORCID

Affiliation:

1. Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic

2. Laboratory for Mycobacterial Diagnostics and Tuberculosis, Regional Institute of Public Health in Ostrava, Partyzánské náměstí 7, 702 00, Ostrava, Czech Republic

Abstract

Background: There is an urgent need for new antitubercular compounds. Modification of antimycobacterial isonicotinohydrazide at hydrazide N2 provided antimycobacterial active com-pounds. Objective: Combining this scaffold with various aliphatic amines that are also frequently present in antitubercular compounds, we have designed, synthesized, and evaluated twenty-three N-(cyclo)alkyl-2-(2-isonicotinoylhydrazineylidene)propanamides and their analogues as potential an-timycobacterial compounds. By increasing lipophilicity, we intended to facilitate the penetration of mycobacteria's highly impermeable cell wall. Methods: The target amides were prepared via condensation of isoniazid and pyruvic acid, followed by carbodiimide-mediated coupling with yields from 35 to 98 %. The compounds were screened against Mycobacterium tuberculosis H37Rv and two nontuberculous mycobacteria (M. avium, M. kansasii). Results: All the derivatives exhibited low minimum inhibitory concentrations (MIC) from ≤0.125 and 2 μM against M. tuberculosis and nontuberculous mycobacteria, respectively. The most active molecules were substituted by a longer n-alkyl from C8 to C14. Importantly, the compounds showed comparable or even several-fold lower MIC than parent isonicotinohydrazide. Based on in silico predictions, a vast majority of the derivatives share suitable physicochemical properties and struc-tural features for drug-likeness. Conclusion: Presented amides are promising antimycobacterial agents.

Funder

Czech Science Foundation

EFSA-CDN

ERDF and SVV

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Antibacterial and Antiviral Agents: Computational Insight;Current Topics in Medicinal Chemistry;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3