HDAC Inhibition as Neuroprotection in COVID-19 Infection

Author:

Correa-Basurto José1,Sixto-López Yudibeth1

Affiliation:

1. Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México. Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, Mexico City, Mexico

Abstract

Abstract: The SARS-CoV-2 virus is responsible for COVID-19 affecting millions of humans around the world. COVID-19 shows various clinical symptoms (fever, cough, fatigue, diarrhea, body aches, headaches, anosmia, and hyposmia). Approximately 30% of patients with COVID-19 showed neurological symptoms, from mild to severe manifestations including headache, dizziness, impaired consciousness, encephalopathy, anosmia, hypogeusia, and hyposmia, among others. The neurotropism of the SARS-CoV-2 virus explains its neuroinvasion provoking neurological damage such as acute demyelination, neuroinflammation, etc. At the molecular level, the COVID-19 patients had higher levels of cytokines and chemokines known as cytokines storms which disrupt the blood-brain barrier allowing the entrance of monocytes and lymphocytes, causing neuroinflammation, neurodegeneration, and demyelination. In addition, the proinflammatory cytokines have been observed in ischemic, hemorrhagic strokes, seizures, and encephalopathy. In this sense, early neuroprotective management should be adopted to avoid or decrease neurological damage due to SARS-CoV-2 infection. Several approaches can be used; one of them includes using HDAC inhibitors (HDACi) due to their neuroprotective effects. Also, the HDACi down-regulates the proinflammatory cytokines (IL-6 and TNF- decreasing the neurotoxicity. HDACi can also avoid and prevent the entrance of the virus into the central nervous System (CNS) and decrease the virus replication by downregulating the virus receptors. Here we review the mechanisms that could explain how the SARS-CoV-2 virus could reach the CNS, induce neurological damage and symptoms, and the possibility to use HDACi as neuroprotective therapy.

Funder

CONACYT

SEP-CONACYT-ANUIES-ECOS Francia

Instituto Politécnico Nacional

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3