Moxifloxacin-isatin Hybrids Tethered by 1,2,3-triazole and their Anticancer Activities

Author:

Yang Mingli1,Liu Hailin2,Zhang Yazhou2,Wang Xiujun3,Xu Zhi2ORCID

Affiliation:

1. Kangda College of Nanjing Medical University, Lianyungang 222000, China

2. School of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guizhou, China

3. Jiangsu Ocean University, Lianyungang 222000, China

Abstract

Aims: To explore more active fluoroquinolone anticancer candidates. Background: Cancer which can affect almost any part of the body, is most striking and deadliest disease. It is estimated that around one in five people globally develop cancer during their lifetime, and approximately 10% people eventually die from this disease, and 18.1 million new cancer cases with 9.6 million deaths occurred in 2018. The anticancer agents play an intriguingly role in fighting against cancer, and above 100 drugs have already been marketed for this purpose. However, the major drawback of current accessible anticancer agents is the low specificity which results in many side effects. Moreover, cancer cells have already generated resistance to almost all available drugs, creating an urgent need to novel anticancer agents with high specificity and great efficiency especially towards drug-resistant cancers. Quinolone and isatin derivatives were reported to possess promising anticancer activity, high specificity, and relatively few side effects. Currently, several quinolone and isatin derivatives such as Voreloxin, Quarfloxin, AT-3639, Semaxanib, Sunitinib and Nintedanib have already been introduced in clinical practice or under evaluations for the treatment of cancer including drug-resistant cancers, revealing their potential as novel anticancer agents. Hybrid molecules have the potential to increase the specificity, improve the efficiency, and overcome the drug resistance, so hybridization is a promising strategy in the drug discovery. Some of the moxifloxacin-isatin hybrids exhibited considerable activity against various cancer cells even drug-resistant cells, so it is conceivable that hybridization of quinolone and isatin moieties may provide novel anticancer candidates. The structure-activity relationships (SARs) demonstrated that the linkers between quinolone and isatin skeletons were critical for the biological activity, and 1,2,3-triazole could exert various noncovalent interactions with biological targets, so introduction of 1,2,3-triazole as the linker between the two moieties may provide more efficient anticancer candidates. Objective: To explore more active fluoroquinolone anticancer candidates and enrich the structureactivity relationships of fluoroquinolone-isatin hybrids. Methods: The synthesized moxifloxacin-isatin hybrids 5a-c, 6a-g and 13a-d were assessed for their anticancer activities against liver cancer cells HepG2, breast cancer cells MCF-7, MCF-7/DOX, prostate cancer cells DU-145 and MDR DU-145 by MTT assay. Hybrid 5b was selected for further evaluation of its tubulin polymerization inhibitory activity with combretastatin A-4 as comparison. Results: Most of the synthesized hybrids were active against the tested cancer cell lines, and the most active hybrid 5b (IC50: 31.3-76.8 μM) was more potent than vorinostat (IC50: 96.7->100 μM), demonstrating moxifloxacin-isatin hybrids are potential anticancer candidates. Conclusion: The mechanism study revealed that inhibition of tubulin polymerization is at least one of the mechanisms of action for this kind of hybrids. Other: The structure-activity relationship was summarized for further rational design of more efficient anticancer candidates.

Funder

Kangda College of Nanjing Medical University

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Reference22 articles.

1. Shewach D.S.; Kuchta R.D.; Introduction to cancer chemotherapeutics. Chem Rev 2009,109(7),2859-2861

2. Fan W.; Yung B.; Huang P.; Chen X.; Nanotechnology for multimodal dynergistic cancer therapy. Chem Rev 2017,117(22),13566-13638

3. Cancer control: knowledge into action Available from: WHO

4. International Agency for Research on Cancer. Latest global cancer data: Cancer burden rises to 181 million new cases and 96 million cancer deaths in 2018 Available from:2018

5. Gao F.; Zhang X.; Wang T.; Xiao J.; Quinolone hybrids and their anti-cancer activities: An overview. Eur J Med Chem 2019,165,59-79

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3