Heart Rate Variability Based Prediction of Personalized Drug Therapeutic Response: The Present Status and the Perspectives

Author:

Pei Zejun1,Shi Manhong2,Guo Junping3,Shen Bairong4

Affiliation:

1. Nanjing Medical University Affiliated Wuxi Second Hospital, No. 68,Zhongshan road, Wuxi, Jiangsu, China

2. Centre for Systems Biology, Soochow University, Suzhou 215006, China

3. The Affiliated Yixing Hospital of Jiangsu University, No. 75, Tongzhenguan Road, Yixing, Jiangsu, China

4. Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China

Abstract

Heart rate variability (HRV) signals are reported to be associated with the personalized drug response in many diseases such as major depressive disorder, epilepsy, chronic pain, hypertension, etc. But the relationships between HRV signals and the personalized drug response in different diseases and patients are complex and remain unclear. With the fast development of modern smart sensor technologies and the popularization of big data paradigm, more and more data on the HRV and drug response will be available, it then provides great opportunities to build models for predicting the association of the HRV with personalized drug response precisely. We here review the present status of the HRV data resources and models for predicting and evaluating of personalized drug responses in different diseases. The future perspectives on the integration of knowledge and personalized data at different levels such as, genomics, physiological signals, etc. for the application of HRV signals to the precision prediction of drug therapy and their response will be provided.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Reference103 articles.

1. Tsoli,M.; Wadham,C.; Pinese,M.; Failes,T.; Joshi,S.; Mould,E.; Yin, J.X.; Gayevskiy,V.; Kumar,A.; Kaplan,W.; Ekert, P.G.; Saletta,F.; Franshaw,L.; Liu,J.; Gifford,A.; Weber, M.A.; Rodriguez,M.; Cohn, R.J.; Arndt,G.; Tyrrell,V.; Haber,M.; Trahair,T.; Marshall, G.M.; McDonald,K.; Cowley, M.J.; Ziegler, D.S. Integration of genomics, high throughput drug screening, and personalized xenograft models as a novel precision medicine paradigm for high risk pediatric cancer. Cancer Biol. Ther. 2018,19(12),1078-1087. http://dx.doi.org/10.1080/15384047.2018.1491498 PMID: 30299205

2. Rhine, C.L.; Neil,C.; Glidden, D.T.; Cygan, K.J.; Fredericks, A.M.; Wang,J.; Walton, N.A.; Fairbrother, W.G. Future directions for high-throughput splicing assays in precision medicine. Hum. Mutat. 2019,40(9),1225-1234. http://dx.doi.org/10.1002/humu.23866 PMID: 31297895

3. Kumari,P.; Mathew,L.; Syal, P. Increasing trend of wearables and multimodal interf ace for human activity monitoring: A review. Biosens. Bioelectron. 2017,90,298-307. http://dx.doi.org/10.1016/j.bios.2016.12.001 PMID: 27931004

4. Horgan,D.; Romao,M.; Morré, S.A.; Kalra, D. Artificial intelligence: power for civilisation-and for better healthcare. Public Health Genom. 2019,22(5-6),145-161. http://dx.doi.org/10.1159/000504785 PMID: 31838476

5. Bai,J.; Shen,L.; Sun,H.; Shen, B. Physiological informatics: collection and analyses of data from wearable sensors and smartphone for healthcare. Adv. Exp. Med. Biol. 2017,1028,17-37. http://dx.doi.org/10.1007/978-981-10-6041-0_2 PMID: 29058214

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3